Horn Optimization Project

- Generate dataset of various horn design/shapes
- Bezier curves will define shape with a couple varying control points per design

Sample Testing Horn Design/Shapes

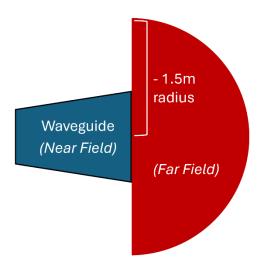
Frequency Sweep from 1000Hz to 10kHz for each design

Determine Directivity and Impedance Values

Create metamodel (Kriging and Polynomial) to represent data

Find optimal solution on Pareto frontier w/ objective functions of...

- Constant linear directivity across frequency sweep
- Minimizing imaginary normal impedance radiation


Find design with desired tradeoff between the two objective functions

1. FEM Helmholtz Simulation

- a. Acoustic Parameters
 - i. Speed of Sound = 343 m/s
 - ii. Wave Number (k) = (2*pi*frequency) / (Speed of Sound)

b. Define Geometry

i. Set geometry bounds for the horn for near-field calculations, and a semicircle for far-field calculations.

c. Mesh Generation

- i. 6 elements per wavelength
- ii. Generation for both near and far fields

d. Frequency Domain Helmholtz PDE

i. Helmholtz equation in 2D (time-harmonic)

$$\nabla^2 u + k^2 u = 0$$

ii. Written as...

$$-
abla \cdot (c
abla u) + au = f$$

- o c = 1 (diffusion coefficient)
- o a = -k^2
- o f = 0
- \circ m = 0, d = 0 (steady state, no mass or damping terms)
- iii. In MATLAB code

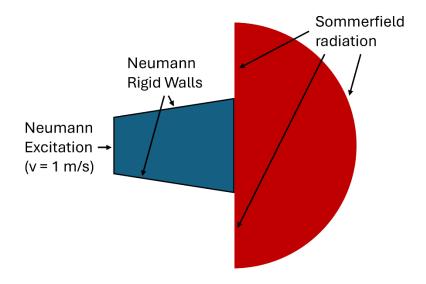
e. Excitation

- i. Parameters
 - o Air Density (rho) = 1.21 kg/m³
 - Omega = 2 * pi * frequency
 - Uniform Velocity (v) = 1 m/s
- ii. Boundary Condition
 - Neumann excitation via velocity source (v = 1 m/s)
 - Applied at throat edge

$$\left. rac{\partial p}{\partial n}
ight|_{ ext{throat}} = -
ho \cdot \omega \cdot i \cdot v$$

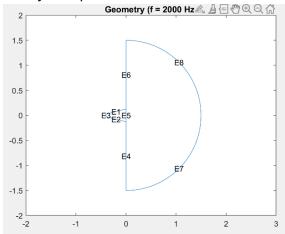
o Integral represent "q" or the flux within the code

f. Wall Boundary Conditions

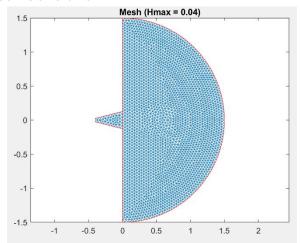

 Ridid Walls: Neuman with g = 0, enforcing hard boundaries with no normal velocity

$$\left. rac{\partial p}{\partial n}
ight|_{\mathrm{wall}} = 0$$

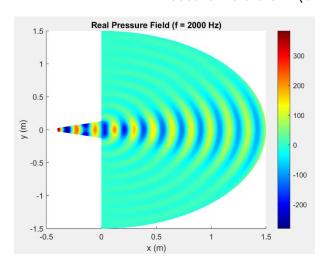
ii. Semi-Circle Edge: Apples Sommerfield radiation condition to absorb outgoing waves (simulating an infinite domain)

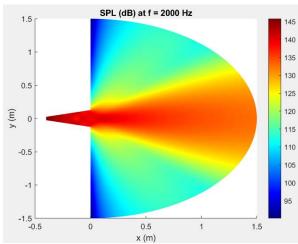

$$rac{\partial p}{\partial n}=ikp$$

 Despite measurements taking place 1m away the far-field domain is 1.5m in distance to potentially avoid reflections off boundary walls

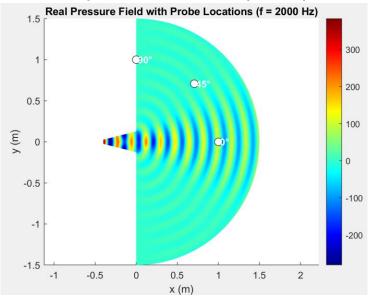


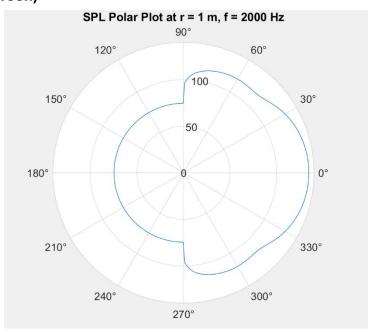
g. Example Simulation Results (2000Hz)


i. Geometry Setup



ii. Mesh Generation


iii. Pressure Field & SPL (SPL = 20*log(p/p_ref) pressure conversion)


2. Finding Pressure and SPL data

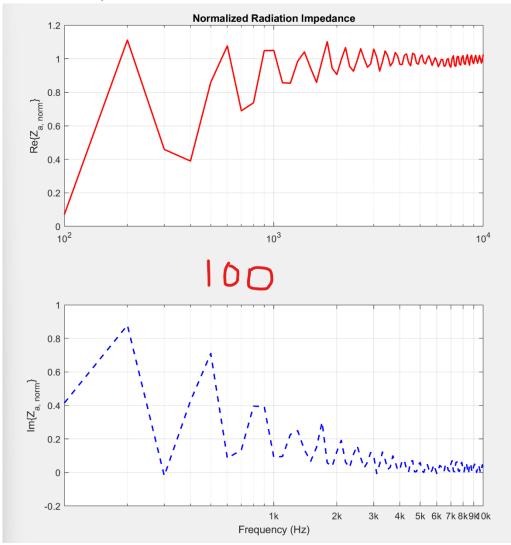
a. Command Prompt write with data at 0 (on-axis), 45, 90 degrees

Angle: 0° | Pressure: 106.0520 Pa | SPL: 134.49 dB Angle: 45° | Pressure: 12.4361 Pa | SPL: 115.87 dB Angle: 90° | Pressure: 1.2402 Pa | SPL: 95.85 dB

b. 360 Polar Plot (sampling 360 points in circle at 1m, interpolating value inbetween)

3. Lumped Radiation Impedance (avg pressure at throat to the volume velocity flowing through that surface)

- a. Finding Lumped Radiation Impedance (Za)
 - The average pressure at the throat of the horn is found to be divided by the particle velocity that is multiplied by the throat cross-sectional area.


$$Z_a = rac{p_{ ext{mean}}}{q} = rac{p_{ ext{mean}}}{v \cdot S_{ ext{th}}}$$

- b. Finding Reference Impedance (Zao)
 - i. This is the characteristic acoustic impedance of the throat in the high-frequency limit
 - ii. Represents the ideal load for a wave propagation normally through a circular duct

$$Z_{a0} = rac{
ho c}{S_{
m th}}$$

- c. Finding Normalized Radiation Impedance (Znorm)
 - i. $Z_a_norm = Z_a/Z_a0$
 - ii. Gives unitless complex value
 - Real Values (resistance): part of the wave that radiates and carries power
 - Imaginary Values (reactance): associated with stored (nonradiated energy near the throat)

d. Sample Results (100Hz to 10kHz sweep, sampling every 100 Hz, took 18 minutes)

